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Abstract. This paper presents a Europe-wide analysis of the skill of the newly operational EFAS (European Flood 

Awareness System) seasonal streamflow forecasts, benchmarked against the Ensemble Streamflow Prediction (ESP) 

forecasting approach. The results suggest that, on average, the System 4 seasonal climate forecasts improve the streamflow 

predictability over historical meteorological observations for the first month of lead time only. However, the predictability 15 

varies in space and time and is greater in winter and autumn. Parts of Europe additionally exhibit a longer predictability, up 

to seven months of lead time, for certain months within a season. The results also highlight the potential usefulness of the 

EFAS seasonal streamflow forecasts for decision-making. Although the ESP is the most potentially useful forecasting 

approach in Europe, the EFAS seasonal streamflow forecasts appear more potentially useful than the ESP in some regions 

and for certain seasons, especially in winter for most of Europe. Patterns in the EFAS seasonal streamflow hindcasts skill are 20 

however not mirrored in the System 4 seasonal climate hindcasts, hinting the need for a better understanding of the link 

between hydrological and meteorological variables on seasonal timescales, with the aim to improve climate-model based 

seasonal streamflow forecasting. 

1 Introduction 

Seasonal streamflow forecasts predict the likelihood of a difference from normal conditions in the following months. Unlike 25 

forecasts at shorter timescales, they currently do not have skill to predict the exact streamflow at a specific location and time. 

The predictability in seasonal streamflow forecasts is driven by two components of the Earth system, the initial hydrological 

conditions (IHC; i.e. of snowpack, soil moisture, streamflow and reservoir levels, etc) and large-scale climate patterns, such 

as the El Niño-Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), the Pacific-North American (PNA) 

pattern and the Indian Ocean Dipole (IOD) (Yuan et al., 2015b). 30 
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The first seasonal streamflow forecasting method, based on a regression technique developed around 1910-11 in the United 

States, harnessed the predictability from accurate IHC of snowpack to derive streamflow for the following summer (Church, 

1935). This statistical method recognised antecedent hydrological conditions and land surface memory, as key drivers of 

streamflow generation for the following months.  

Alongside the physical understanding of streamflow generation processes came technical developments, such as the creation 5 

of the first hydrological models and the acquisition of longer observed meteorological time series, which led to the creation 

of the first operational model-based seasonal streamflow forecasting system. This system, called Extended Streamflow 

Prediction (ESP; i.e. note that ESP nowadays stands for Ensemble Streamflow Prediction, although it refers to the same 

forecasting method), was developed by the United States National Weather Service (NWS) in the 1970s (Twedt et al., 1977; 

Day, 1985). The ESP forecasts are produced by forcing a hydrological model, initialised with the current IHC, with the 10 

observed historical meteorological time series available. The output is an ensemble streamflow forecast (where each year of 

historical data is a streamflow trace) for the following season(s) (Twedt et al., 1977; Day, 1985). The quality of the ESP 

forecasts can be high in basins where the IHC dominate the surface hydrological cycle for several months (Wood and 

Lettenmaier, 2008). 

Precipitation variability was however soon identified as a major source of error in the ESP forecasts (Pagano and Garen, 15 

2006), as this forecasting method is based on the assumption that past meteorological events are representative of future 

events, where each historical year has an equal likelihood of occurrence in the forecast year. As a result, the ESP forecasts 

are skilful as long as the weather experienced in the current year is not extraordinarily extreme compared to all the historical 

years of meteorological observations available (Day, 1985). This drawback led to the investigation of the use of seasonal 

climate forecasts, in place of the historical meteorological inputs, to feed hydrological models and extend the predictability 20 

of hydrological variables on seasonal timescales (Pagano and Garen, 2006). This investigation was made possible by 

technical and scientific advances. Scientifically, seasonal climate forecasts were improved greatly by the understanding of 

ocean-atmosphere-land interactions and the identification of large-scale climate patterns as drivers of the hydro-

meteorological predictability (Goddard et al., 2001; Troccoli, 2010). This was technically implementable with the increase of 

computing resources, making it possible to run dynamical coupled ocean-atmosphere-land general circulation models on the 25 

global scale at high spatial and temporal resolutions (Doblas-Reyes et al., 2013). An additional technical challenge, the 

coarse spatial resolution of seasonal climate forecasts compared to the finer resolution of hydrological models, had to be 

addressed. To tackle this issue, many authors have explored different ways of downscaling climate variables for hydrological 

applications (Wood et al., 2002 and references therein). 

While climate-model-based seasonal streamflow forecasting experiments are more common outside of Europe, for example 30 

for the United States (Wood et al., 2002; 2005; Mo and Lettenmaier, 2014), Australia (Bennett et al., 2016), Africa (Yuan et 

al., 2013), they remain limited in Europe, with a few examples in France (Céron et al., 2010; Singla et al., 2012; Crochemore 

et al., 2016), in Central Europe (Demirel et al., 2015; Meißner et al., in review), in the United Kingdom (Bell et al., 2017; 

Prudhomme et al., in review) and at the global scale (Yuan et al., 2015a; Candogan Yossef et al., 2017). This is because, 
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although the quality of seasonal climate forecasts has increased over the past decades, there remains limited skill in seasonal 

climate forecasts for the extra-tropics, particularly for the variables of interest for hydrology, notably precipitation and 

temperature (Arribas et al., 2010; Doblas-Reyes et al., 2013). 

In Europe, the NAO is one of the strongest predictability sources of seasonal climate forecasts; it is associated with changes 

in the surface westerlies over the North Atlantic and Europe, and hence with changes in temperature and precipitation 5 

patterns over Europe (Hurrell, 1995; Hurrell and Van Loon, 1997). It was shown to affect streamflow predictability, 

especially during winter (Dettinger and Diaz, 2000; Bierkens and van Beek, 2009; Steirou et al, 2017), additionally to the 

IHC and the land surface memory. It was additionally shown to be an indicator of flood damage and occurrence in parts of 

Europe (Guimarães Nobre et al., 2017). 

As the quality and usefulness of seasonal streamflow forecasts increases, their usability for decision-making lags behind. 10 

Translating the quality of a forecast into an added value for decision-making and incorporating new forecasting products into 

established decision-making chains are not easy tasks. This has been explored for many applications of the water sector, such 

as navigation (Meißner et al., in review), reservoir management (Viel et al., 2016; Turner et al., in review), drought-risk 

management (Sheffield et al., 2013; Yuan et al., 2013; Crochemore et al., 2017), irrigation (Chiew et al., 2003; Li et al., in 

review), water resources management (Schepen et al., 2016) and hydropower (Hamlet et al., 2002); but it has not been 15 

adopted by the flood preparedness community.  

The European Flood Awareness System (EFAS) is at the forefront of seasonal streamflow forecasting, with one of the first 

operational pan-European seasonal hydrological forecasting systems. The aim of this paper is to bridge the current gap in 

pan-European climate-model-based seasonal streamflow forecasting studies. Firstly, the setup of the newly operational 

EFAS climate-based seasonal streamflow forecasting system is presented. A Europe-wide analysis of the skill of this 20 

forecasting system compared to the ESP forecasting approach is then presented, in order to identify whether there is any 

added value in using seasonal climate forecasts instead of historical meteorological observations for forecasting streamflow 

on seasonal timescales over Europe. Subsequently, the potential usefulness of the EFAS seasonal streamflow forecasts for 

decision-making is assessed. 

2 Data and methods 25 

2.1 EFAS hydrological simulation and seasonal hindcasts 

The data used in this paper include a streamflow simulation and two seasonal streamflow hindcasts (Fig. 1). 

2.1.1 Hydrological modelling and streamflow simulation 

The Lisflood model was used to produce all the simulation and hindcasts used in this paper.  Lisflood is a GIS-based 

hydrological rainfall-runoff-routing distributed model written in the PCRaster Dynamic Modelling Language, which enables 30 

it to use spatially distributed maps (i.e. both static and dynamic) as input (De Roo et al., 2000; Van Der Knijff et al., 2010). 
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The Lisflood model was calibrated to produce pan-European parameter maps (see Zajac et al., 2013 and Smith et al., 2016 

for details). 

The Lisflood model is run operationally in EFAS, with the simulation domain covering Europe at a 5 x 5 km resolution. A 

reference simulation, called the EFAS water balance (EFAS-WB), is available on a daily time step starting from February 

1990. Lisflood simulates the hydrological processes within a basin, starting from the previous day IHC (e.g. snow cover, 5 

storage in the upper and lower zones, soil moisture, initial streamflow, reservoir filling) and forced with the most recent 

observed meteorological fields (i.e. of precipitation, potential evapotranspiration and temperature; provided by the EFAS 

meteorological data collection centres). The observed meteorological fields are daily maps of spatially interpolated point 

measurements of precipitation (from more than 6000 stations) and temperature (from more than 4000 stations) at the surface 

level. These same data are used to produce interpolated potential evapotranspiration maps from the Penman–Monteith 10 

method (Alfieri et al., 2014). All meteorological variables are interpolated on a 5 x 5 km grid using an inverse distance 

weighting scheme and the temperature is first corrected using the elevation (Smith et al., 2016). 

The EFAS-WB is the best estimate of the hydrological state at a given time and for a given grid point in EFAS and is thus 

used as initial conditions from which the seasonal hydrological forecasts are started. 

2.1.2 Ensemble seasonal streamflow hindcasts 15 

In this paper, two types of ensemble seasonal streamflow hindcasts are used: the Ensemble Streamflow Prediction (ESP) 

hindcast (hereafter referred to as ESP) and the System 4-driven seasonal streamflow hindcast [hereafter referred to as CM-

SSF (climate-model-based seasonal streamflow forecast), following the notation from Yuan et al. (2015b)].  

They are both initialised from the EFAS-WB, on the first day of each month, to produce a new ensemble streamflow forecast 

up to a lead time of seven months (215 days), with a daily time step. Both hindcasts are generated from February 1990 for 20 

the same European domain as the EFAS-WB, at the same 5 x 5 km resolution. The unique difference between the ESP and 

the CM-SSF is the meteorological forcing used to drive the hydrological model, described below. 

The ESP is produced by driving the Lisflood model with 20 (the number of years of data available at the time the hindcast 

was produced) randomly resampled years of historical meteorological observations (i.e. the same as the meteorological 

observations used to produce the EFAS-WB). A new 20-member ESP is thus generated at the beginning of each month and 25 

for the next seven months. 

The CM-SSF is produced by driving the Lisflood model with the ECMWF System 4 seasonal climate hindcast (Sys4; i.e. of 

precipitation, evaporation and temperature). Sys4 has a spatial horizontal resolution of about 0.7 degrees (approximately 70 

km). It is re-gridded to the Lisflood spatial resolution using an inverse distance weighting scheme and the temperature is first 

corrected using the elevation. Sys4 is made of 15 ensemble members, extended to 51 every three months (Molteni et al., 30 

2011). From 2011 onwards the Sys4 forecasts were run in real time and all contained 51 ensemble members. A new 15 to 

51-member CM-SSF is hence produced at the beginning of each month and for the next seven months. Operationally, the 
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CM-SSF forecasts are currently used in EFAS to generate a seasonal streamflow outlook for Europe at the beginning of 

every month. 

2.2 Hindcast evaluation strategy 

For this study, monthly region specific discharge averages of the hindcasts (CM-SSF and ESP) and EFAS-WB were used. 

The specific discharge is the discharge per unit area of an upstream basin. For this paper, the gridded daily specific discharge 5 

was calculated by dividing the gridded daily discharge output maps (of the hindcasts and the EFAS-WB) by the Lisflood 

gridded upstream area static map. Subsequently, the gridded daily specific discharge maps were used to calculate daily 

region averaged specific discharges (for each region in Fig. 2) by summing up the daily specific discharge values of each 

grid cell within a region, divided by the number of grid cells in that region. Finally, monthly specific discharge region 

averages were calculated for each calendar month.  10 

The regions displayed in Fig. 2 were created by merging several basins together (basins used operationally in EFAS for the 

shorter timescales forecasts), while respecting hydro-climatic boundaries. They were chosen for the analysis presented in this 

paper for two main reasons. Firstly, they are the regions used operationally to display the EFAS seasonal streamflow 

outlook. Secondly, they were created in order to capture large-scale variability in the weather. 

The analysis of the hindcasts was performed on monthly specific discharge (hereafter referred to as streamflow) region 15 

averages for hindcast starting dates spanning February 1990 to November 2016 (included; approximately 27 years of data), 

with one to seven months of lead time. In this paper, one month of lead time refers to the first month of the forecast (e.g. the 

January 2017 streamflow for a forecast made on the first of January 2017). Two months of lead time is the second month of 

the forecast (e.g. the February 2017 streamflow for a forecast made on the first of January 2017), etc.  

Several verification scores were selected in order to assess the hindcasts’ quality. These verification scores were chosen to 20 

cover a wide range of hindcast attributes (i.e. accuracy, sharpness, reliability, overall performance and discrimination). Most 

of these verification scores are the same as chosen in Crochemore et al. (2016), with an additional verification score selected 

to look at hindcast discrimination. The EFAS-WB streamflow simulations were used as a proxy for observation against 

which the seasonal streamflow hindcasts were evaluated, hence excluding model errors from the analysis. 

2.2.1 Hindcast accuracy 25 

Both hindcasts (CM-SSF and ESP) were assessed in terms of their accuracy; the magnitude of the errors between the 

hindcast ensemble mean and the ‘truth’ (i.e. the EFAS-WB). For this purpose, the mean absolute error (MAE) was calculated 

for each region, target month (i.e. the month that is being forecast) and lead time (i.e. one to seven months). The lower the 

MAE, the more accurate the hindcast. 
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2.2.2 Hindcast sharpness 

Both hindcasts were also assessed in terms of their sharpness; an attribute of the hindcast only, which is a measure of the 

spread of the ensemble members of a hindcast. In this paper, the 90% interquantile range (IQR) (i.e. the difference between 

the 95th and the 5th percentiles of the hindcast distribution) was calculated for each region, target month and lead time. The 

lower the IQR, the sharper the hindcast. The sharpness should not be looked at in isolation and should be analysed together 5 

with the hindcast accuracy. 

2.2.3 Hindcast reliability 

Both hindcasts were additionally assessed in terms of their reliability; the statistical consistency between the hindcast 

probabilities and the observed frequencies. For this purpose, the probability integral transform (PIT) diagram was calculated 

for each region, target month and lead time (Gneiting et al., 2007). The PIT diagram is the cumulative distribution of the PIT 10 

values as a function of the PIT values. The PIT values measure where the ‘truth’ (i.e. EFAS-WB) falls relative to the 

percentiles of the hindcast distribution. For a perfectly reliable hindcast, the ‘truth’ should fall uniformly in each percentile 

of the hindcast distribution, giving a PIT diagram that falls exactly on the 1 to 1 diagonal. A hindcast that systematically 

under [over] estimates the ‘truth’ will have a PIT diagram below [above] the diagonal, outside of the ±0.1 tolerance bands 

from the 1 to 1 diagonal. A hindcast that is too narrow [wide] will have a horizontal [vertical] PIT diagram. 15 

The PIT diagram presents the hindcast reliability differently from a reliability diagram, in the sense that the observed 

frequency is not plotted on a PIT diagram. 

2.2.4 Hindcast overall performance 

The hindcasts were furthermore assessed in terms of their overall performance from the continuous rank probability score 

(CRPS), calculated for each region, target month and lead time (Hersbach, 2000). The CRPS is a measure of the difference 20 

between the hindcast and the observed (i.e. EFAS-WB) cumulative distribution functions. The lower the CRPS, the better 

the overall performance of the hindcast. 

In this paper, the skill of the CM-SSF is benchmarked with respect to the ESP in order to identify whether there is any added 

value in using Sys4 instead of historical meteorological observations for forecasting the streamflow on seasonal timescales 

over Europe. To this end, skill scores were calculated for the MAE, IQR and CRPS, using the following equation: 25 

𝑆𝑘𝑖𝑙𝑙 𝑠𝑐𝑜𝑟𝑒 = 1 −
𝑠𝑐𝑜𝑟𝑒𝐶𝑀−𝑆𝑆𝐹

𝑠𝑐𝑜𝑟𝑒𝐸𝑆𝑃
          (1) 

Skill scores were calculated for each region, target month and lead time and will be referred to as: MAESS, IQRSS and 

CRPSS, respectively. Skill scores larger [smaller] than zero indicate more [less] skill in the CM-SSF compared to the ESP. A 

skill score of zero means that the CM-SSF is as skilful as the ESP. 
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2.2.5 Hindcast potential usefulness 

For decision-making, the ability of a seasonal forecasting system to predict the right category of an event (e.g. above or 

below normal conditions) months ahead is of great importance (Gobena and Gan, 2010). In this paper, the potential 

usefulness of the CM-SSF and the ESP to forecast lower and higher than normal streamflow conditions within their 

hindcasts is assessed. 5 

To do so, the relative operating characteristic (ROC) score, a measure of hindcast discrimination (Mason and Graham, 

1999), was calculated. The thresholds selected to calculate the ROC are the lower and upper terciles of the EFAS-WB 

climatology for each season. They were calculated for the simulation period (February 1990 to May 2017), by grouping 

together EFAS-WB monthly streamflows for each month falling in a season (SON: September-October-November, DJF: 

December-January-February, MAM: March-April-May and JJA: June-July-August). For each season and each region a 10 

lower and upper tercile streamflow value was obtained, subsequently used as thresholds against which to calculate the 

probability of detection (POD) and the false alarm rate (FAR) (with 0.1 probability bins) for both hindcasts, for each region, 

season and lead time. Finally, the area under the ROC curve, i.e. the ROC score, was calculated for both hindcasts, for each 

region, season and lead time. The ROC score ranges from 0 to 1, with a perfect score of 1. A hindcast with a ROC score ≤ 

0.5 is unskilful, i.e. less good than the long term average climatology which has a ROC of 0.5, and therefore not useful.  15 

Because the ROC score was calculated from a low number of events [i.e. approximately 27 years × 3 months in each season 

× 1/3 (lower or upper tercile) = 27 simulated events], the hindcasts were judged skilful and useful when their ROC score ≥ 

0.6 instead of 0.5. Moreover, the CM-SSF was categorised as more useful than the ESP when the CM-SSF’s ROC score was 

at least 10% larger than the ESP’s ROC score. 

3 Results 20 

3.1 Overall skill of the CM-SSF 

In the first part of the results, the skill of the CM-SSF (benchmarked with respect to the ESP) is presented, in terms of the 

accuracy (MAESS), sharpness (IQRSS), reliability (PIT diagrams) and overall performance (CRPSS) in the hindcast 

datasets. This will benchmark the added value of using Sys4 against the use of historical meteorological observations for 

forecasting the streamflow on seasonal timescales over Europe. 25 

As shown by the MAESS boxplots (Fig. 3), the CM-SSF appears on average more accurate than the ESP for the first month 

of lead time only, for all seasons excluding spring (MAM). Beyond one month of lead time, the CM-SSF becomes on 

average as or less accurate than the ESP. There are however noticeable differences between the different seasons. The CM-

SSF shows the largest improvements in the average accuracy compared to the ESP in winter (DJF) and for the first month of 

lead time. For higher lead times (i.e. two to seven months), the accuracy of the CM-SSF is on average quite similar to that of 30 

the ESP in autumn (SON) and winter, and on average lower in spring and summer (JJA). The boxplots for the autumn and 
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winter are smaller than for the spring and summer, which hints a smaller variability in the MAESS amongst regions and 

target months in autumn and winter compared to the spring and summer. The boxplots for the CRPSS look very similar to 

the MAESS boxplots, the main difference being the lower average scores for two to seven months of lead time in autumn 

and winter (Fig. 3). 

The boxplots of the IQRSS show that the CM-SSF predictions are on average as sharp as those of the ESP for the first month 5 

of lead time (slightly sharper in autumn; Fig. 3). For two to seven months of lead time, in autumn and winter, the CM-SSF 

predictions are on average sharper than those of the ESP, whereas in spring and summer, the CM-SSF predictions are on 

average slightly less sharp than the ESP predictions. As for the MAESS, the boxplots of the IQRSS for the autumn and 

winter are slightly smaller than for the spring and summer, hinting a smaller variability in the IQRSS amongst regions and 

target months in autumn and winter than in spring and summer. 10 

Overall, the presence of the boxplots above the zero line (i.e. no skill line) for all lead times suggests that the CM-SSF is 

more skilful than the ESP for some regions and target months, beyond the first month of lead time. 

As shown in the ESP PIT diagrams (Fig. 4), lines are concentrated around the diagonal, within the tolerance bands, for all 

seasons and both lead times (i.e. one and seven months; this was also observed for two to six months of lead time, not 

shown). This signifies that the ESP is mostly reliable, with the exception of a few cases where it is under-predictive for the 15 

first month of lead time in winter and summer. This is expected, as, by design, the ESP reverts back to climatology at 

increasing lead times (i.e. when the effect of the IHC fades away). 

The CM-SSF appears generally less reliable than the ESP, especially at longer lead times (i.e. increasing spread of lines 

around the diagonal; Fig. 4). The CM-SSF is on average most [least] reliable for both lead times in autumn [spring], shown 

by the smaller [larger] spread of lines around the diagonal. For the autumn and winter, for both lead times, most lines are 20 

situated below the diagonal and outside of the tolerance bands, signifying that the CM-SSF mostly under-predicts the 

simulated streamflow within the hindcast period. For the winter, a few horizontal or near horizontal lines can be observed for 

both lead times, meaning that the CM-SSF predictions are sometimes too narrow. For the spring and summer, most lines are 

situated above the diagonal and outside of the tolerance bands, suggesting that the CM-SSF mostly over-predicts the 

simulated streamflow. 25 

3.2 Potential usefulness of the CM-SSF 

In the second part of the results, the potential usefulness of the CM-SSF compared to the ESP is described, for decision-

making. Here potential usefulness is defined as the ability of the forecasting systems to predict lower or higher streamflows 

than normal, as measured with the ROC score.  

Generally, either of the two forecasting systems (CM-SSF or ESP) is capable to predict skilfully whether the streamflow will 30 

be anomalously low or high in the coming months (Fig. 5). However, for a few seasons and regions, none of the two 

forecasting systems is skilful at predicting lower and/or higher streamflows than normal. This is especially noticeable in 

winter. 
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For most seasons, the ESP is more skilful than the CM-SSF at predicting lower and higher streamflows than normal. 

However, in winter for most regions and during other seasons for several regions, the CM-SSF appears more skilful than the 

ESP. Regions where the CM-SSF best predicts lower and higher streamflows than normal at most lead times are summarised 

in Table 1 for all four seasons and the lower and upper terciles. 

4 Discussion 5 

4.1 Does seasonal climate information improve the predictability of seasonal streamflow forecasts over Europe? 

On average over Europe and across all seasons, the CM-SSF is skilful (in terms of hindcast accuracy, sharpness and overall 

performance, using the ESP as a benchmark), for the first month of lead time only. This means that, on average, Sys4 

improves the predictability over historical meteorological information for pan-European seasonal streamflow forecasting for 

the first month of lead time only. At longer lead times, historical meteorological information becomes as good as or better 10 

than Sys4 for seasonal streamflow forecasting over Europe. Crochemore et al. (2016) and Meißner et al. (in review) similarly 

found positive skill in the seasonal streamflow forecast (Sys4 forced hydrological model compared to an ESP) for the first 

month of lead time, after which the skill faded away, for basins in France and Central Europe respectively. 

However, the predictability varies per season and the CM-SSF predictions are on average sharper (increasingly at increasing 

lead times) than and as accurate as the ESP predictions in autumn and winter beyond the first month of lead time. In spring 15 

and summer, the CM-SSF predictions are on average less sharp and less accurate than the ESP predictions. By design, the 

ESP is almost perfectly reliable for all seasons, regions and lead times, with the exception of a few cases where it is under-

predictive for the first month of lead time in winter and summer, due to the IHC. Contrastingly, the CM-SSF tends to 

systematically under- [over-] predict the autumn and winter [spring and summer] simulated streamflow. 

The added predictability gained from Sys4 was shown to lead to skilful CM-SSF predictions of lower and higher 20 

streamflows than normal for specific seasons and regions. The CM-SSF is more skilful at predicting anomalously low and 

high streamflows than the ESP in certain seasons and regions, and noticeably in winter in many parts of Europe. Several 

authors have discussed the higher winter predictability over (parts of) Europe, with examples in basins in France 

(Crochemore et al., 2016), Central Europe (Steirou et al., 2017), the UK (Bell et al., 2017) and the Iberian Peninsula 

(Lorenzo-Lacruz et al., 2011). Bierkens and van Beek (2009) additionally showed that there was a higher winter 25 

predictability in Scandinavia, the Iberian Peninsula and around the Black Sea. Our results are mostly consistent with these 

findings, except for Scandinavia, where the ESP is mostly skilful in winter. Bierkens and van Beek (2009) produced the 

seasonal streamflow forecast analysed in their paper by forcing a hydrological model with resampled years of historical 

meteorological information based on their winter NAO index. However, Sys4 has difficulties in forecasting the NAO over 

Europe (Kim et al., 2012), which could have led to these inconsistent results with the ones presented by Bierkens and van 30 

Beek (2009). 
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In spring, the CM-SSF is more skilful than the ESP at predicting lower and higher streamflows than normal beyond one 

month of lead time mostly in regions of Western Europe. This could be due to a persistence of the skill from the previous 

winter through the land surface memory (i.e. groundwater-driven streamflow or snowmelt-driven streamflow), as highlighted 

by Bierkens and van Beek (2009) for Europe, Singla et al. (2012) for parts of France, Lorenzo-Lacruz et al. (2011) for the 

Iberian Peninsula and Meißner et al. (in review) for the Rhine. Moreover, it could be that most of the gained predictability 5 

occurs in March, a transition month between the more predictable winter (as mentioned above) and spring, as discussed by 

Steirou et al. (2017). 

The added predictability from Sys4 for forecasting lower and higher streamflows than normal is limited in summer and 

autumn for most regions. Other studies have found similar patterns for (parts of) Europe, these include; less skill in summer 

than in winter overall for basins in France (Crochemore et al., 2016); less skill for the low flow season (July to October) for 10 

basins in Central Europe (Meißner et al., in review); negative correlations in summer and autumn seasonal streamflow 

forecasts in Central Europe as the influence of the winter NAO fades away (Steirou et al., 2017); and less skill overall in 

summer than in winter in Europe (Bierkens and van Beek, 2009). The lower CM-SSF skill for predicting lower and higher 

streamflows than normal in summer could additionally be due to the convective storms in summer over Europe, which are 

hard to predict, and to the fact that it is the dry season in most of Europe, where rivers are groundwater fed. Therefore, in this 15 

season, the quality of the IHC controls the streamflow predictability. 

While the CM-SSF is most skilful (in terms of hindcast accuracy, sharpness and overall performance, using the ESP as a 

benchmark) in autumn and winter and most potentially useful in winter and spring, this does not appear to correlate with 

high performance in the Sys4 precipitation and temperature hindcasts [as seen on the maps of correlation for Sys4 

precipitation and temperature for all four seasons (SON, DJF, MAM and JJA) and with two months of lead time (as 20 

identified in this paper); available at https://meteoswiss.shinyapps.io/skill_metrics/]. Over Europe, the Sys4 precipitation and 

temperature hindcasts are the most skilful in summer and the least skilful in autumn and winter. Moreover, the regions of 

high CM-SSF skill for predicting lower and upper streamflows than normal do not clearly correspond to regions of high 

performance in the Sys4 precipitation and temperature hindcasts. These differences could be partially induced by the 

different benchmark used to evaluate the skill of the CM-SSF (i.e. the ESP) compared to the one used to look at the 25 

performance of the Sys4 precipitation and temperature hindcasts (i.e. ERA Interim). However, these results clearly indicate 

that looking at the performance of the Sys4 precipitation and temperature hindcasts only does not give a good indication of 

the skill and potential usefulness of the seasonal streamflow hindcasts over Europe [as shown by Neumann et al. (submitted 

to J. Hydrometeorol.) for the 2013/14 Thames River floods], and that marginal performance in seasonal climate forecasts can 

translate through to more predictable seasonal streamflow forecasts, and vice versa. The added predictability in the CM-SSF 30 

could be due to the combined predictability in the precipitation and temperature hindcasts, as well as a lag in the 

predictability from the land surface memory.  

In most regions and for most seasons, at least one of the two forecasting systems (CM-SSF or ESP) is able to predict lower 

or higher streamflows than normal. However, in winter, the number of regions and lead times for which none of the 
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forecasting systems are skilful increases. This could be because in winter, many regions experience weather-driven high 

streamflows and the performance of Sys4 is limited at this time of year (as mentioned above). In those regions, the seasonal 

streamflow forecasts could be improved either by improving the IHC, through for example data assimilation, or by 

improving the seasonal climate forecasts. 

Overall, the ESP appears very skilful at forecasting lower or higher streamflows than normal, showing the importance of 5 

IHC and the land surface memory for seasonal streamflow forecasting (Wood and Lettenmaier, 2008; Bierkens and van 

Beek, 2009; Yuan et al., 2015b). 

4.2 What is the potential usefulness and usability of the EFAS seasonal streamflow forecasts for flood preparedness? 

What appears like little added skill does not necessarily mean no skill for the forecast users and can in fact be a large added 

value for decision-making (Viel et al., 2016). The ability of a seasonal streamflow forecasting system to predict the right 10 

category of an event months ahead is valuable for many applications in the water sector (e.g. navigation, reservoir 

management, drought-risk management, irrigation, water resources management, hydropower and flood preparedness). From 

the results presented in this paper, it appears that either of the two forecasting systems (CM-SSF or ESP) are capable of 

predicting lower or higher streamflows than normal months in advance, thanks to the predictability gained from the IHC, the 

land surface memory and the seasonal climate hindcast in some regions and for certain seasons. 15 

However, as highlighted by White et al. (2017), there is currently a gap between usefulness and usability of seasonal 

information. What is a useful scientific finding does not automatically translate into usable information which will fit into 

any user’s decision-making chain (Soares and Dessai, 2016). While several authors have already investigated the usability of 

seasonal streamflow forecasts for applications such as navigation (Meißner et al., in review), reservoir management (Viel et 

al., 2016; Turner et al., in review), drought-risk management (Sheffield et al., 2013; Yuan et al., 2013; Crochemore et al., 20 

2017), irrigation (Chiew et al., 2003; Li et al., in review), water resources management (Schepen et al., 2016) and 

hydropower (Hamlet et al., 2002), its application to flood preparedness is still left mostly unexplored. One exception being 

Neumann et al. (submitted to J. Hydrometeorol.) who look at the use of the CM-SSF to predict the 2013/14 Thames basin 

floods. This is partially due to the complex nature of flood generating mechanisms, still poorly studied on seasonal 

timescales beyond snowmelt-driven spring floods, as well as the fact that seasonal forecasts reflect the likelihood of 25 

abnormal seasonal streamflow totals, but without much skilful information on the exact timing, location and the severity of 

the impact of individual flood events within that season. Coughlan de Perez et al. (2017) looked at the usefulness of seasonal 

rainfall forecasts for flood preparedness in Africa and highlighted the complexities behind using these forecasts as a proxy 

for floodiness [for discussion on floodiness see Stephens et al. (2015)]. Furthermore, decision-makers in the navigation, 

reservoir management, drought-risk management, irrigation, water resources management and hydropower sectors are 30 

familiar with working on long timescales (i.e. several weeks to months ahead). In contrast, the flood preparedness 

community is currently mostly used to working on timescales of hours to a couple of days.  
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The Red Cross Red Crescent Climate Centre has recently designed a new approach that harnesses the usefulness of seasonal 

climate information for decision-making for disaster management. This approach, called ‘Ready-Set-Go!’, is made of three 

stages. The ‘Ready’ stage is based on seasonal forecasts, where they are used as monitoring information to drive contingency 

planning (e.g. volunteer training). The ‘Set’ stage is triggered by sub-seasonal forecasts, used as early-warning information 

to alert volunteers. Finally, the ‘Go!’ stage is based on short-range forecasts and consists in the evacuation of people and the 5 

distribution of aid (White et al., 2017). Using a similar approach, seasonal streamflow forecasts could complement existing 

forecasts at shorter timescales and provide monitoring and early-warning information for flood preparedness. 

Such an approach however requires the use of consistent forecasts from short to seasonal timescales. In this context, moving 

to seamless forecasting is becoming vital (Wetterhall and Di Giuseppe, in review). 

Soares and Dessai (2016) also identified the accessibility to the information, enhanced by collaborations and ongoing 10 

relationships between users and producers, as a key enabler of the usability of seasonal information. International projects, 

such as the Horizon 2020 IMPREX (IMproving PRedictions and management of hydrological EXtremes) project (van den 

Hurk et al., 2016), alongside promoting scientific progress on hydrological extremes forecasting from short to seasonal 

timescales over Europe, gather together forecasters and decision-makers and can effectively demonstrate the added value of 

the integration of seasonal information in decision-making chains. 15 

4.3 Aspects for future work 

In this paper, terciles of the simulated streamflow are used. However, and because the application of the EFAS seasonal 

streamflow forecasts is of particular relevance for flood preparedness, the evaluation of the hindcasts for lower and higher 

streamflow extremes (for example the 5th and the 95th percentiles respectively) would be more relevant and might give very 

different results. This was not done in this paper as the time period covered by the seasonal streamflow hindcasts (i.e. 20 

approximately 27 years) was not long enough for statistically reliable results for lower and higher streamflow extremes. The 

limited hindcast length is a common problem in seasonal predictability studies. Increasing the hindcast length back in time 

could lead to more stable Sys4 hindcasts and hence to more stable and potentially skilful seasonal streamflow hindcasts (Shi 

et al., 2015). 

Furthermore, in this paper, the hindcasts were analysed against simulated streamflow, used as a proxy for observed 25 

streamflow. This is necessary because it enables an analysis of the quality of the hindcasts over the entire computation 

domain, rather than at non-evenly spaced stations over the same domain (Alfieri et al., 2014). Further work could however 

include carrying out a similar analysis for selected river stations in Europe, in order to account for model errors. 

The calculation of the verification scores (excluding the ROC) was made by randomly selecting 15 ensemble members from 

the 51 ensemble members of the CM-SSF hindcasts, for starting dates for which the ensemble varies between 15 and 51 30 

members (i.e. hindcasts made on the 1st of January, March, April, June, July, September, October and December; this is due 

to the split between 15 and 51 ensemble members in the Sys4 hindcasts, as described in Sect. 2.1.2 of this paper). In order to 

investigate the potential impact of this evaluation strategy on the results presented in this paper, the CRPSS was calculated 
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for 15 and 51 ensemble members of the CM-SSF hindcasts for starting dates for which 51 ensemble members are available 

for the full hindcast period (i.e. hindcasts made on the 1st of February, May, August and November). This is displayed in Fig. 

6 for all hindcast starting dates, lead times (i.e. one to seven months) and regions combined. Overall, it is apparent that the 

impact of this evaluation strategy on the results presented in this paper should be minimal, as all points align themselves 

approximately with the 1 to 1 diagonal. 5 

The next version of the ECMWF seasonal climate forecast, SEAS5, is due to be released in November 2017. Future work 

could include forcing the Lisflood model with SEAS5 and comparing the obtained seasonal streamflow hindcasts to the CM-

SSF presented in this paper. This should indicate whether developments to the seasonal climate forecast translate through to 

better pan-European seasonal streamflow forecasts, which is of particular interest for regions and seasons when neither the 

ESP nor the CM-SSF are currently skilful. 10 

This paper assesses the added predictability from using seasonal climate forecasts, additionally to the IHC. Additional work 

to further disentangle and quantify the contribution of both predictability sources (seasonal climate forecasts versus IHC) to 

seasonal streamflow forecasting quality over Europe could be carried out by using the EPB (end point blending) method 

(Arnal et al., 2017). 

5 Conclusions 15 

In this paper, the newly operational EFAS seasonal streamflow forecasting system [producing the CM-SSF forecasts by 

forcing the Lisflood model with the ECMWF System 4 seasonal climate forecasts (Sys4)] was presented and benchmarked 

(in terms of hindcast accuracy, sharpness, reliability and overall performance) against the ESP forecasting approach (ESP 

produced by forcing the Lisflood model with historical meteorological observations) for the hindcast period 1990 to 2017. 

On average, Sys4 improves the predictability over historical meteorological information for pan-European seasonal 20 

streamflow forecasting for the first month of lead time only. However, the predictability varies per season and the CM-SSF 

is more skilful on average at predicting autumn and winter streamflows than spring and summer streamflows. Additionally, 

parts of Europe exhibit a longer predictability, up to seven months of lead time, for certain months within a season. 

Subsequently, the potential usefulness of the two forecasting systems (CM-SSF and ESP) was assessed by analysing their 

skill in predicting lower and higher streamflows than normal. Overall, at least one of the two forecasting systems is capable 25 

of predicting those events months in advance. The ESP appears the most skilful on average, showing the importance of IHC 

and the land surface memory for seasonal streamflow forecasting. Nevertheless, for certain regions and seasons the CM-SSF 

is the most skilful at predicting anomalously low or high streamflows, noticeably in winter, beyond one month of lead time. 

Patterns in skill in the CM-SSF are not mirrored in the Sys4 precipitation and temperature hindcasts. This hints that using 

seasonal climate forecast performance as a proxy for seasonal streamflow forecasting skill is not adequate and that more 30 

work is needed to understand the link between meteorological and hydrological variables on seasonal timescales over 

Europe. 
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Figure 1: Schematic of the EFAS-WB streamflow simulation and of the CM-SSF and ESP seasonal streamflow hindcasts 

generation. 
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Figure 2: Map of the 74 European regions (dark blue outlines) selected for the analysis of the CM-SSF and the ESP. 
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Figure 3: Boxplots of the MAESS (top row), IQRSS (middle row) and CRPSS (bottom row) for all four seasons (SON, DJF, MAM 

and JJA from the left-most to the right-most column) as a function of lead time (i.e. one to seven months). The boxplots contain the 

scores for all target months falling in a given season and all 74 regions. For all scores, values larger [smaller] than zero indicate 

that the CM-SSF is more [less] skilful than the ESP (benchmark). Where the skill is zero, the CM-SSF is as skilful as the ESP for 5 
the hindcast period. 
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Figure 4: PIT diagrams for the CM-SSF (main plots) and the ESP (inplots) for all four seasons (SON, DJF, MAM and JJA from 

the top to the bottom row) and for one and seven months of lead time (left and right columns, respectively). These lead times were 

selected for display to highlight the evolution of reliability between the first and last month of the hindcast. The lines in the plots 

correspond to all the target months falling in a season and all 74 regions. The dotted diagonal lines are the ±0.1 tolerance bands 

from the 1 to 1 diagonal. Lines above [below] the diagonal and outside of the tolerance bands signify an over-prediction [under-5 
prediction] of the simulated streamflow by the hindcast. 
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Table 1: Regions where the CM-SSF is more skilful than the ESP at predicting anomalously low (lower tercile; first column) or 

high (upper tercile; second column) streamflows for all four seasons (SON, DJF, MAM and JJA from the top to the bottom row). 

This is a summary of the information displayed in Fig. 5. 

 Lower tercile Upper tercile 

SON 

- Few regions in Fennoscandia 

- Po River basin (northern Italy) 

- Elbe River basin (south of Denmark) 

- Upstream of the Rhine River basin 

- Upstream of the Danube River basin 

- Duero River basin (Iberian Peninsula) 

- Few regions in Fennoscandia 

- Iceland 

- Parts of the Danube River basin 

- Segura River basin (Iberian Peninsula) 

DJF 

Many regions except: 

- in most of Fennoscandia North of the Baltic Sea, 

- parts of Central Europe. 

Same as lower tercile. 

MAM 
- Few regions on the Iberian Peninsula 

- Few regions in the western part of Central Europe 

Same as lower tercile. 

JJA 

- Few regions in the United Kingdom (UK) 

- Ireland 

- North-western edge of the Iberian Peninsula 

- Regions in Fennoscandia around the Baltic Sea 

- Regions south of the North Sea 

- Northern part of the UK 

- Ireland 

- North-western edge of the Iberian Peninsula 

- Regions in Fennoscandia around the Baltic Sea 

- Around the Elbe River basin 

- Upstream of the Danube River basin 

- Along the Adriatic Sea in Italy 
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Figure 5: Maps of the best system (as measured with the ROC score) for all four seasons (SON, DJF, MAM and JJA from the top 

to the bottom row) and the lower and upper simulated streamflow seasonal terciles (left-most and right-most columns respectively) 

in each region. The pie charts display the best system for each lead time (one to seven months), as shown on the example pie chart 

on the bottom right of this figure. There are three possible cases: 1) neither the ESP nor the CM-SSF is skilful (red colours), 2) the 

ESP is skilful and better than the CM-SSF (yellow colours), and 3) the CM-SSF is skilful and better than the ESP (blue colours). 5 
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Figure 6: CRPSS calculated for the CM-SSF against the ESP (benchmark) for hindcasts made on the 1st of February, May, August 

and November, all lead times (one to seven months) and all 74 regions. The x-axis [y-axis] contains the CRPSS calculated from 15 

[all 51] ensemble members of the CM-SSF. 
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